

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0270 of 17 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Sikla Injection system VMU plus for Concrete
Product family to which the construction product belongs	Bonded fastener for use in concrete
Manufacturer	Sikla Holding GmbH Kornstraße 4 4614 MARCHTRENK ÖSTERREICH
Manufacturing plant	Sikla Herstellwerk 1 Sikla Herstellwerk 3
This European Technical Assessment contains	30 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601, Edition 04/2020
This version replaces	ETA-15/0270 issued on 2 February 2016

European Technical Assessment ETA-15/0270 English translation prepared by DIBt

Page 2 of 30 | 17 December 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0270 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Sikla Injection system VMU plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar VMU plus or VMU plus Polar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm or an internal threaded anchor rod VMU-IG-M6 to VMU-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 3, C 4, C 7 and C 9
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 5, C 8, C 10
Displacements (static and quasi-static loading)	See Annex C 12 to C 14
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 6 and C 11
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

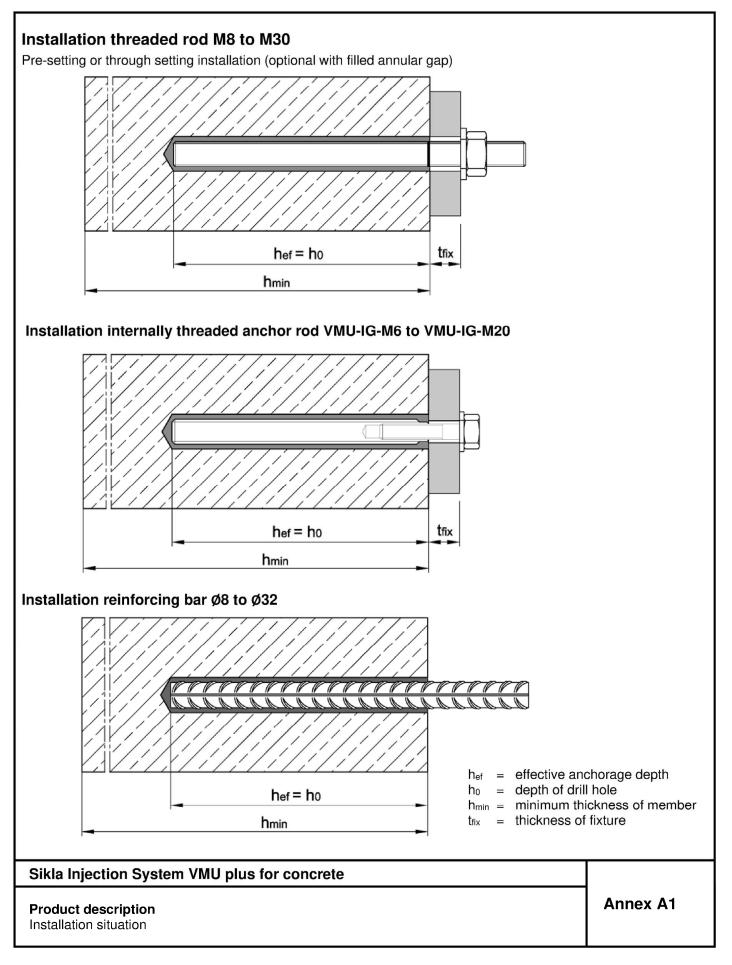
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 30 | 17 December 2021

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 17 December 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Johanna Baderschneider

Page 6 of European Technical Assessment ETA-15/0270 of 17 December 2021

Cartridge VMU plus or VMU plus Polar	
Coaxial cartridge 150 ml, 280 ml, 300 ml bis 333 ml 380 ml bis 420 ml	
Side-by-side cartridge 235 ml, 345 ml bis 360 ml 825 ml	
Foil tube cartridge 165 ml 300 ml	
Cartridge imprint : VMU plus or VMU plus Polar, processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing (depending on the temperature), with as well as without travel scale	time
Static mixer	
Sikla Injection System VMU plus for concrete	
Product description And Cartridges and attachments	nex A2

Threaded rod Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)	
VMU-A 1 1 1 1 1 1 1 1 1 1 1 1 1	Marking e.g.: $>$ M10 > identifying mark of manufacturing plant M10 size of thread <u>additional marking:</u> A4 stainless steel HC high corrosion resistant steel
Threaded rod VM-A (material sold by the metre, to be cut at the required la M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR) Commercial standard threaded rod with: M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR) - Materials, dimensions and mechanical properties see Table A1 - Inspection certificate 3.1 acc. to EN 10204:2004 Washer with bore and reducing adapter for filling the gap between the bore for diameter < M24: t = 5 mm $\ge M24: t = 6 mm$	
Internally threaded anchor rod VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU (zinc plated, A4, HCR)	-IG M20 Marking e.g.: ↔ M8 identifying mark of manufacturing plant I internal thread M8 size of internal thread additional marking: A4 stainless steel HCR high corrosion resistant steel
Sikla Injection System VMU plus for concrete Product description Threaded rods and internally threaded anchor rod	Annex A3

Part	Designation		Material						
electr hot-di	p galvanized ≥ 40 µr		SO 4042:2018 or /erage) acc. to EN ISO 1461:2009, EN ISO 10684:2004+AC:2009 or SO 17668:2016						
		property class	charac ultimate		charac yield st		fracture elongation	EN ISO 683-4:2018,	
		4.6		400		240	A ₅ > 8 %	EN 10263:2001;	
1	Threaded rod	4.8		400		320	A ₅ > 8 %	Commercial	
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	standard threaded rod:	
		5.8	[]	500] []	400	A ₅ > 8 %	EN ISO 898-1:2013	
		8.8		800		640	A ₅ > 8 %		
		4	for class	4.6 or 4.8	rods				
2	Hexagon nut	5	for class	4.6, 4.8, 5	5.6 or 5.8 r	ods		EN ISO 898-2:2012	
		8	for class	4.6, 4.8, 5	5.6, 5.8 or 8	3.8 rods			
За	Washer			SO 7089: 387:2006		ISO 7093	:2000, EN ISO	7094:2000,	
3b	Washer with bore		steel, zin	c plated					
	Internally threaded	Internally threaded 5.8				EN ISO 683-4:2018			
4			steel, electroplated or sherardized A ₅ > 8%				= EN (SO 683-4.2018)		
4 Stain	anchor rod	8.8					I	EN ISO 683-4:2018	
Stain Stain	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant ste	CF CF el HCR CF	RC II (1.43 RC III (1.44 RC V (1.45	01 / 1.430 101 / 1.44 29 / 1.456	07 / 1.4311 04 / 1.457 65)	/ 1.4567 1 / 1.4578	/ 1.4541) /)	EN ISO 683-4:2018	
Stain Stain	less steel A2 ¹⁾ less steel A4	CF CF	RC II (1.43 RC III (1.44	01 / 1.430 101 / 1.44 29 / 1.456 teristic)7 / 1.4311 04 / 1.457 [.]	/ 1.4567 1 / 1.4578 teristic	/ 1.4541)		
Stain Stain	less steel A2 ¹⁾ less steel A4	CF CF el HCR CF property	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	01 / 1.430 101 / 1.44 29 / 1.456 teristic	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic	/ 1.4541)	EN 10088-1:2014	
Stain Stain High	less steel A2 ¹⁾ less steel A4 corrosion resistant ste	CF CF el HCR CF property class	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	01 / 1.430 101 / 1.44 29 / 1.456 teristic strength	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic rength	/ 1.4541)	EN 10088-1:2014	
Stain Stain High	less steel A2 ¹⁾ less steel A4 corrosion resistant ste	el HCR CF property class 50	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	01 / 1.430 101 / 1.44 29 / 1.456 teristic strength 500	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic rength 210	(1.4541) fracture elongation $A_5 > 8\%$	EN 10088-1:2014	
Stain Stain High	less steel A2 ¹⁾ less steel A4 corrosion resistant ste	el HCR CF property class 50 70	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	01 / 1.430 101 / 1.44 29 / 1.456 teristic strength 500 700 800	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic rength 210 450	/ 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020	
Stain Stain High	less steel A2 ¹⁾ less steel A4 corrosion resistant ste	el HCR CF property class 50 70 80	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods	07 / 1.4311 04 / 1.457 65) charac yield st f _{yk} [N/mm ²]	/ 1.4567 1 / 1.4578 teristic rength 210 450	/ 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014	
Stain Stain High	less steel A2 ¹⁾ less steel A4 corrosion resistant ste Threaded rod ²⁾	el HCR CF property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r	07 / 1.4311 04 / 1.457 55) charac yield st f _{yk} [N/mm ²] ods	/ 1.4567 1 / 1.4578 teristic rength 210 450	/ 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020	
Stain Stain High	less steel A2 ¹⁾ less steel A4 corrosion resistant ste Threaded rod ²⁾	el HCR CF property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class for class for class for class e.g.: EN I EN ISO 7	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or \$0 7089	07 / 1.4311 04 / 1.457 35) charac yield st [N/mm ²] ods 80 rods 2000, EN 5; EN ISO 8	/ 1.4567 1 / 1.4578 teristic rength 210 450 600 ISO 7093 387:2006	/ 1.4541) fracture elongation A ₅ > 8% A ₅ > 8% A ₅ > 8% 2000,	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020 EN 10088-1:2014	
Stain Stain High 1	less steel A2 ¹⁾ less steel A4 corrosion resistant stee Threaded rod ²⁾ Hexagon nut ²⁾	el HCR CF property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class for class for class for class e.g.: EN I EN ISO 7 stainless	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or \$0 7089	07 / 1.4311 04 / 1.457 35) charac yield st [N/mm ²] ods 80 rods 2000, EN 5; EN ISO 8	/ 1.4567 1 / 1.4578 teristic rength 210 450 600 ISO 7093 387:2006	(1.4541) fracture elongation $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020 EN 10088-1:2014	
Stain Stain High 1 2 3a	less steel A2 ¹⁾ less steel A4 corrosion resistant stee Threaded rod ²⁾ Hexagon nut ²⁾ Washer Washer with bore Internally threaded	el HCR CF property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class for class for class for class for class for class IG-M20	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or 50, 70 or	07 / 1.4311 04 / 1.457 35) charac yield st [N/mm ²] ods 80 rods 2000, EN 5; EN ISO 8	/ 1.4567 1 / 1.4578 teristic rength 210 450 600 ISO 7093 387:2006	$\begin{array}{c} \text{/ 1.4541)} \\ \text{fracture} \\ \text{elongation} \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \end{array}$ $\begin{array}{c} \text{:}2000, \\ \text{tant steel HCR} \\ \text{A}_5 > 8\% \\ \end{array}$	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020 EN 10088-1:2014	
Stain Stain High 1 2 3a 3b	less steel A2 ¹⁾ less steel A4 corrosion resistant stee Threaded rod ²⁾ Hexagon nut ²⁾ Washer Washer	el HCR CF property class 50 70 80 50 70 80	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class for class for class for class for class ICI EN ISO 7 stainless IG-M20	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or 50, 70 or	07 / 1.4311 04 / 1.457 35) charac yield st [N/mm ²] ods 80 rods 2000, EN 5; EN ISO 8	/ 1.4567 1 / 1.4578 teristic rength 210 450 600 ISO 7093 387:2006	(1.4541) fracture elongation $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$:2000, tant steel HCR	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020 EN 10088-1:2014	
Stain Stain High 1 2 3a 3b 4	less steel A2 ¹⁾ less steel A4 corrosion resistant stee Threaded rod ²⁾ Hexagon nut ²⁾ Washer Washer with bore Internally threaded	el HCR CF property class 50 70 80 50 70 80 50 70 80	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class for class for class for class for class for class IG-M20	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or 50, 70 or	07 / 1.4311 04 / 1.457 35) charac yield st [N/mm ²] ods 80 rods 2000, EN 5; EN ISO 8	/ 1.4567 1 / 1.4578 teristic rength 210 450 600 ISO 7093 387:2006	$\begin{array}{c} \text{/ 1.4541)} \\ \text{fracture} \\ \text{elongation} \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \end{array}$ $\begin{array}{c} \text{:}2000, \\ \text{tant steel HCR} \\ \text{A}_5 > 8\% \\ \end{array}$	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020 EN 10088-1:2014	
Stain Stain High 1 2 3a 3b 4 () for p	less steel A2 ¹⁾ less steel A4 corrosion resistant stee Threaded rod ²⁾ Hexagon nut ²⁾ Washer Washer with bore Internally threaded anchor rod	el HCR CF property class 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80	RC II (1.43 RC II (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm ²] for class for class for class for class for class IG-M20 IG-M6 to	01 / 1.430 401 / 1.44 29 / 1.456 teristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or 50, 70 or 50, 70 or 50, 70 or steel A4; IG-M16	07 / 1.4311 04 / 1.457 35) charac yield st [N/mm ²] ods 80 rods 2000, EN 5; EN ISO 8	/ 1.4567 1 / 1.4578 teristic rength 210 450 600 ISO 7093 387:2006	$\begin{array}{c} \text{/ 1.4541)} \\ \text{fracture} \\ \text{elongation} \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \text{A}_5 > 8\% \\ \end{array}$ $\begin{array}{c} \text{:}2000, \\ \text{tant steel HCR} \\ \text{A}_5 > 8\% \\ \end{array}$	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020 EN 10088-1:2014	

	<mark>orcing bar</mark> 5 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø	0 28, Ø 32	
(
	 Minimum value of related rip ar Rip height of the bar shall be in (d: Nominal diameter of the bar 		
Table	e A2: Material rebar		
Part	Designation	Material	
Reba	r	I	
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI acc. EN 1992-1 $f_{uk} = f_{tk} = k \cdot f_{yk}$	-1/NA
Sikla	a Injection System VMU plus for	concrete	
			Annex A5

Specification of intended use						
Sikla Injection System VMU plus	Threaded rod	Internally threaded anchor rod	Rebar			
Static and quasi-static action	M8 - M30	IG-M6 - IG-M20 (zinc plated, A4, HCR)	Ø8 - Ø32			
Seismic action, performance category C1	M8 - M30	-	Ø8 - Ø32			
		r unreinforced normal we rs), acc. to EN 206:2013	* I			
Base materials	strength classes C20/	25 to C50/60 acc. to EN 2	206-1:2013+A1:2016			
	crac	ked and uncracked concre	ete			
Temperature Range I -40°C to +40°C	max long term temperatur	e +24 °C and max short te	rm temperature +40°C			
Temperature Range II -40°C to +80°C	max long term temperature +50 °C and max short term temperature +80°C					
Temperature Range III -40°C to 120°C	max long term temperatur	e +72 °C and max short te	rm temperature +120°C			

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions: Intended use of Material according to Annx A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.)
- · Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work
- Fasteners are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, IG-M6 to IG-M20, Rebar Ø8 to Ø32
- Waterfilled holes (not sea water): M8 to M16, IG-M6 to IG-M10, Rebar Ø8 to Ø16
- · Hole drilling by hammer or compressed air drill mode or vacuum drill mode
- · Installation direction D3: downwards, horizontally and upwards (overhead) installation
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Sikla Injection System VMU plus for concrete

Intended Use

Specifications

Annex B1

Deutsches Institut für Bautechnik

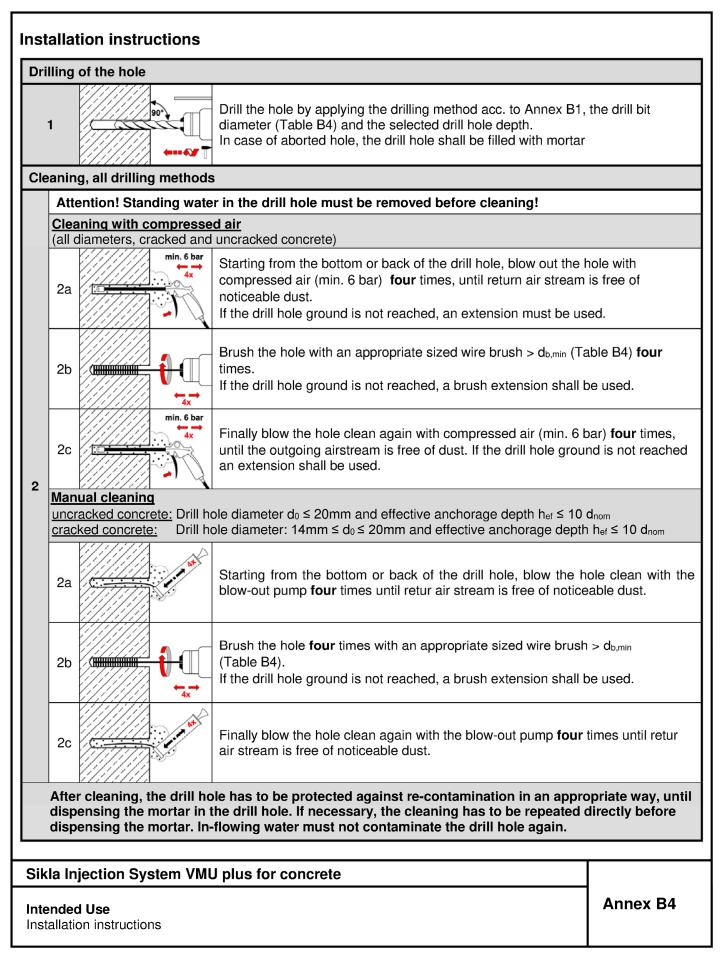
Threaded rod		M	3 M10	0 M12	2 M1	6 1	120	M24	M27	7	M30	
	[mmm]											
Diameter threaded rodd=dnomNominal drill hole diameterd0	[mm] [mm]	-	10		16		20 24 24 28				30 35	
		·			80		90	28 96	108		120	
Effective anchorage depth hef,max		·					400	480	540		600	
Pro sotting	[mm]	•	12		18		22	26	30	<u> </u>	33	
clearance installation and		•										
hole in the fixture installation $d_f \leq$	[mm] 12	14		20)	26	30	33		40	
Installation torque max T _{inst} ≤		·		(35)) 1	20	160	180		200	
	[mm	-	+ 30mm					ef + 2d	1			
Minimum spacing s _{min}		-			80		00	120	135		150	
0	[[mm]] 40	50	60	80) 1	00	120	135	,	150	
max. installation torque for property class 4												
Table B2: Installation paramete	rs fo	or inte	ernally	threade	ed anc	hor re	bd					
Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M	10 I	G-M 12	2 IG-	M 16	IG	i-M 20	
Inner diameter of threaded rod	d2	[mm]	6	8	10)	12		16		20	
Outer diameter of threaded rod ¹⁾ d=	dnom	[mm]	10	12	16	;	20		24		30	
Nominal drill hole diameter	d ₀	[mm]	12	14	18	;	24		28		35	
Effective anchorage depth	ef,min	[mm]	60	70	80		90		96		120	
n,	ef,max	[mm]	200	240	32	0	400 4		80		600	
Diameter of clearance hole in the fixture	d _f ≤		7	9	12	2	14		18		22	
Installation torque max T	inst ≤	[Nm]	10	10	20		40		60		100	
Minimum screw-in depth	lig	[mm]	8	8	10)	12		16		20	
Minimum thickness of member		[mm]		30 mm 0 mm			he	f + 2d ₀	2d ₀			
Minimum spacing		[mm]	50	60	80		100	1	120		150	
Minimum edge distance	Cmin		50	60	80)	100	1	120		150	
with metric thread acc. to EN 1993-1-8:200			ar									
Rebar		Ø	3 Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø Ø 2	5 Ø	28	Ø 3	
Diameter rebar d=d _{nom}	[mm]		10	12	14	16	20	25			32	
Nominal drill hole diameter ¹⁾ d ₀	[mm]				18	20	25	32			40	
	[mm]	·		70	75	80	90	100			128	
Effective anchorage depth hef.max	[mm	·		240	280	320	400	500			640	
Minimum thickness of member h _{min}	[mm]	h _{ef}	+ 30 mm 100 mm			h _{ef} + 2d ₀						
Minimum spacing s _{min}			100	12	25 14		160					
Minimum edge distance C _{min}	[mm	·		60	70	80	100	125			160	
for Ø8, Ø10 and Ø12 both nominal drill hole		1					1		I			
	6											
Sikla Injection System VMU plus	IOR C	oncre	te									
											B2	

Table B4:	Parameter (cleaning	and set	ting tool	S				
Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø		Retainin	g washer	
		11111111111		¢[-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				ition direct	
[-]	[-]	Ø [mm]	d₀ [mm]	d⊾ [mm]	d _{b,min} [mm]	[-]	₽	-	1
M8			10	12	10,5				
M10	VMU-IG M 6	8 / 10	12	14	12,5	No	rotoining		uirod
M12	VMU-IG M 8	10 / 12	14	16	14,5		retaining v	vasher requ	ineu
		12	16	18	16,5				
M16	VMU-IG M10	14	18	20	18,5	VM-IA 18			
		16	20	22	20,5	VM-IA 20			
M20	VMU-IG M12	20	24	26	24,5	VM-IA 24	_		
M24	VMU-IG M16		28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all
M27		25	32	34	32,5	VM-IA 32			
M30	VMU-IG M20	28	35	37	35,5	VM-IA 35			
		32	40	41,5	40,5	VM-IA 40			

Blow-out pump (volume 750ml) Drill bit diameter (d₀): 10 mm to 20 mm Anchorage depth (h_{ef}): \leq 10 d_{nom} for uncracked concrete

Recommended compressed air tool (min 6 bar) All applications

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm



Steel brush Drill bit diameter (d_0) : all diameters

Sikla Injection System VMU plus for concrete

Intended Use Cleaning and setting tools Annex B3

Installation instruction	ons (continuation)	
Injection		
3 MILLESSACE	Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. For every working interruption longer than the working time (Table B5 or Table B6) as well as for new cartridges, a shall be used.	ne recommended
4	Before injecting the mortar, mark the required anchorage depth on t element.	he fastening
5 min.3x	Prior to dispensing into the drill hole, squeeze out separately a minir strokes and discard non-uniformly mixed adhesive components unti shows a consistent grey colour. For tubular film cartridges dismiss a full strokes.	I the mortar
6a	Starting from the bottom or back of the cleaned drill hole fill the hole approximately two-thirds with adhesive. Slowly withdraw the static m the hole fills to avoid air pockets. For embedment larger than 190mr nozzle shall be used. Observe the gel-/ working times given in Table B5 or Table B6.	nixing nozzle as n an extension
6b	 Retaining washer and mixer nozzle extensions shall be used accord for the following applications: Horizontal installation (horizontal direction) and ground installation downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depression. Overhead installation: Drill bit-Ø d₀ ≥ 18 mm 	(vertical
Sikla Injection System	VMU plus for concrete	
Intended Use	ontinuation)	Annex B5

Sett	ting the fastening ele	ment	
7		Push fastening element into the hole while turning slightly to ensure p distribution of the adhesive until the embedment depth is reached. The fastener shall be free of dirt, grease, oil or other foreign material.	
В		Make sure that the fastening element is fully seated up to the full emb and that excess mortar is visible at the top of the hole. If these requir maintained, the application has to be renewed before the end of the For overhead installation, the fastener should be fixed (e.g. by wedge	ements are not working time.
9	· · · · · · · · · · · · · · · · · · ·	Allow the adhesive to cure to the specified time prior to applying any Do not move or load the fastener until it is fully cured (Table B5 or Ta	
0		Remove excess mortar.	
1	Tinst	The fixture can be mounted after curing time. Apply installation torque according to Table B1or B2.	e ≤ T _{inst}
2		Optionally, for pre-setting installation, the annular gap between anche attachment can be filled with mortar. Therefor replace the regular was with drill and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.	
	la Injection System	VMU plus for concrete	
ык	, ,		

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 10°C to - 6°C	90 min ²⁾	24 h ²⁾
- 5°C to - 1°C	90 min	14 h
0°C to + 4°C	45 min	7 h
+ 5°C to + 9°C	25 min	2 h
+ 10°C to + 19°C	15 min	80 min
+ 20°C to + 29°C	6 min	45 min
+ 30°C to + 34°C	4 min	25 min
+ 35°C to + 39°C	2 min	20 min
+ 40°C	1,5 min	15 min
Cartridge temperature	+ 5°C te	o + 40°C

¹⁾ in wet concrete the curing time must be doubled

²⁾ cartridge temperature must be at min. +15°C

Table B6: Maximum processing time and minimum curing time, VMU plus Polar

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 20°C to - 16°C	75 min	24 h
- 15°C to - 11°C	55 min	16 h
- 10°C to - 6°C	35 min	10 h
- 5°C to - 1°C	20 min	5 h
0°C to +4°C	10 min	2,5 h
+ 5°C to + 9°C	6 min	80 min
+10°C	6 min	60 min
Cartridge temperature	- 20°C to	o + 10°C

¹⁾ in wet concrete the curing time must be doubled

Sikla Injection System VMU plus for concrete

Intended Use

Processing time and curing time

Annex B7

Thread	ded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure										
Cross	sectional area	As	[mm ²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under tens	sion load	1)								
eq	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zir	Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Š	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
۵. م	A4 and HCR Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	_3)	_3)
Partial	factors ²⁾										
	Property class 4.6	γMs,N	[-]				2	,0			
ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
zinc	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8	γMs,N	[-]				1	,5			
s	A2, A4 and HCR Property class 50	γMs,N	[-]				2,	86			
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]			1	,87			_3)	_3)
Ω.	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

²⁾ in absence of national regulation

³⁾ Fastener type not part of the ETA

Sikla Injection System VMU plus for concrete

Performance

Characteristic steel resistances for threaded rods under tension loads

Threa	ided rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	acteristic resistance under shear load	1)									
Steel	failure <u>without</u> lever arm										
eq	Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zin	Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
St	A4 and HCR, property class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
Steel	failure <u>with</u> lever arm										
eq	Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	112
zin	Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	179
ŝš	A2, A4 and HCR, property class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	112
Stainless steel	A2, A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
St	A4 and HCR, property class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Partia	Il factor ²⁾										
	Property class 4.6	γMs,V	[-]				1,6	57			
I, ated	Property class 4.8	γMs,V	[-]				1,2	25			
Steel, zinc plat	Property class 5.6	γMs,V	[-]				1,6	\$7			
zin	Property class 5.8	γMs,V	[-]				1,2	25			
	Property class 8.8	γMs,V	[-]				1,2	25			
SS	A2, A4 and HCR, property class 50	γMs,V	[-]				2,3	38			
Stainless steel	A2, A4 and HCR, property class 70	γ́Ms,∨	[-]			1,5	56			_3)	_3)
5	A4 and HCR, property class 80	γMs,V	[-]			1,3	33			_3)	_3)

²⁾ in absence of national regulation

³⁾ Fastener type not part of the ETA

Sikla Injection System VMU plus for concrete

Performance

Characteristic steel resistances for threaded rods under tension loads

Threaded rods / Inte	ernally threaded anchor	rods / R	ebars	all sizes
Concrete cone failu	ire			
	uncracked concrete	k _{ucr,N}	[-]	11,0
Factor	cracked concrete	k _{cr,N}	[-]	7,7
Edge distance		Ccr,N	[mm]	1,5 • h _{ef}
Spacing		Scr,N	[mm]	2 • C _{cr,N}
Splitting failure				
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}
Spacing		S cr,sp	[mm]	2 • C _{cr,sp}

Sikla Injection System VMU plus for concrete

Performance Characteristic values for concrete cone and splitting failure

Threa	ded	rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel	failu	ire													
Chara	acteri	stic resistance		$N_{Rk,s}$	[kN]			$A_s \cdot f_{ul}$	k (or se	e Tab	le C1)				
Partia	l fac	tor		γMs,N	[-]			5	see Ta	ble C1					
Com	oineo	d pull-out and c	oncrete failure												
Char	acter	istic bond resi	stance in <u>uncracked</u>	concrete	e C20/25										
	1:	40°C/24°C				10	12	12	12	12	11	10	9		
ar	II:	80°C/50°C	dry or wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5		
nperaturange	III:	120°C/72°C				5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0		
Temperature range	I:	40°C/24°C				7,5	8,5	8,5	8,5		o porfe	rmone			
Te	II:	80°C/50°C	waterfilled drill hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5		o perio asse	ormanc ssed	;e		
	III:	120°C/72°C				4,0	5,0	5,0	5,0						
Char	acter	istic bond resis	stance in <u>cracked</u> co	ncrete C	20/25										
	I:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5		
ture	II:	80°C/50°C	dry or wet concrete	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5		
Temperature range	111:	120°C/72°C				2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5		
emp ra	1:	40°C/24°C				4,0	4,0	5,5	5,5	 n	o perfo	ormanc	e		
Ĕ	II:	80°C/50°C	waterfilled drill hole	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,0	4,0	4,0			ssed			
	111:	120°C/72°C				2,0	2,5	3,0	3,0						
	1	nfactor ψ ^o sus in (concrete C20/25		1	0,73									
iture e	1:	40°C/24°C	dry or wet						0,7	73					
nperati range	11:	80°C/50°C	concrete;	ψ^0 sus	[-]				0,0	65					
Temperature range	111:	120°C/72°C	- waterfilled drill hole						0,5	57					
-		120 0/12 0			C25/30				1,0						
					C23/30 C30/37				1,0						
Inoro	naina	factors for -			C35/45					07					
		factors for τ _{Rk} Rk (C20/25)		Ψc	C40/50				1,0						
		,			C45/55				1,0						
					C50/60					10					
Conc	rete	cone failure			1	1									
Relev	ant p	arameter							see Ta	ble C3	;				
		ailure				1									
	-	arameter							see Ta	ble C3					
	· · ·	n factor				1									
		concrete		γinst	[-]	1,0				1,2					
-		drill hole		γinst	[-]		1.	.4			•	rmanc	e		
				7.030							asse	ssed			
Sikla	ı Inje	ection Syster	n VMU plus for co	ncrete											

Table C5: Characteristic values	for threa	ded roo	is und	der sh	ear lo	ads				
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm			•		1	•	•		•	
Characteristic resistance, steel zinc plated, property class 4.6, 4.8, 5.6, 5.8	$V^0{}_{Rk,s}$	[kN]			0,6 • A	ıs∙fuk (O	r see ta	ble C2)		
Characteristic resistance, steel zinc plated, property class 8.8, stainless steel A2 / A4 / HCR, all property classes	$V^0_{Rk,s}$	[kN]			0,5 • A	s∙fuk (O	r see ta	ble C2)		
Ductility factor	k 7	[-]				1	,0			
Partial factor	γMs,V	[-]				see Ta	able C2			
Steel failure with lever arm										
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]		_	1,2 • W	el•fuk (C	or see ta	able C2))	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see ta	ble C2			
Concrete pry-out failure										
Pry-out Factor	k ₈	[-]				2	.,0			
Concrete edge failure		I	1						1	
Effective length of fastener	lf	[mm]			min(h _{ef} ;	12 d _{nom})			nin 00mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]				1	,0			
								T		
Sikla Injection System VMU plus	s for conc	rete						4		
Performance Characteristic value for threaded rod	s under sh	ear load	S					Ar	nnex (25

Steel failure					M8	M10	M12	M16	M20	M24	M27	M30
Characteristic re	esistance		N _{Rk,s,C1}	[kN]				1,0 ·	N _{Rk,s}			
Partial factor			γ∕Ms,∨	[-]			:	see Ta	ble C1			
Combined pull	-out and co	oncrete failure										
Characteristic	bond resis	tance in concrete C	20/25 to (50/60								
<u>ພ</u> I: 40	°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
08 II: 80	°C/50°C	dry or wet concrete	$ au_{Rk,C1}$	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
II 80 III: 120 III: 120 III: 40 III: 80	°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
04 :1 gerat	°C/24°C				2,5	2,5	3,7	3,7				
U: 80	°C/50°C	waterfilled drill hole	$ au_{Rk,C1}$	[N/mm²]	1,6	1,9	2,7	2,7	n	•	ormanc essed	e
⊢ III: 120	°C/72°C				1,3	1,6	2,0	2,0				
Installation fac	tor											
Dry or wet conc	rete		γinst	[-]	1,0				1,2			
Waterfilled drill	hole		γinst	[-]		1	,4		no	o perfo asse	ormanc ssed	е
Threaded rod		tion , performanc		,	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
Steel failure Characteristic re	esistance		V _{Rk,s,C1}	[kN]				0,7 ·	V ⁰ Rk,s			
	esistance		V _{Rk,s,C1} γ _{Ms,V}	[kN] [-]					V ⁰ _{Rk,s} able C2	2		
Characteristic re										2		
Characteristic re Partial factor Factor for ann	ular gap	thout hole clearance						See Ta		2		
Characteristic re Partial factor	u lar gap wi	thout hole clearance e clearance between fastener and fixture	γMs,∨	[-]				See Ta	able C2	2	_	
Characteristic re Partial factor Factor for ann Factor for	u lar gap wi	e clearance between	γms,∨ α _{gap}	[-]				See Ta	able C2	2		
Characteristic re Partial factor Factor for ann Factor for	u lar gap wi	e clearance between	γms,∨ α _{gap}	[-]				See Ta	able C2	2		

Tabl	e C8: Characte	eristic values of te	ensio	n loads	for inte l	rnally tl	hreaded	ancho	or rods	
Intern	ally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel	failure ¹⁾		-	-		-				
	cteristic resistance	· · · · · · · · · · · · · · · · · · ·	N _{Rk,s}	[kN]	10	17	29	42	76	123
	zinc plated, strengt	h class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
	l factor		γMs,N	[-]			1	,5	1	
	acteristic resistance ess steel A4 / HCR		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
	l factor		γMs,N	[-]			1,87			2,86
Comb	pined pull-out and	l concrete cone failu	re							
Chara	acteristic bond res	sistance in <u>uncracke</u>	ed conc	crete C20/	25	_	_			_
	l: 40°C/24°C			[N/mm²]	12	12	12	12	11	9,0
re	II: 80°C/50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9,0	9,0	9,0	9,0	8,5	6,5
Femperature range	III: 120°C/72°C			[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0
mp∈ rar	l: 40°C/24°C			[N/mm ²]	8,5	8,5	8,5			
Te	II: 80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	_ no per	formance	assessed
	III: 120°C/72°C			[N/mm ²]	5,0	5,0	5,0			
Chara	acteristic bond res	sistance in <u>cracked</u> o	concre	te C20/25						
	I: 40°C/24°C			[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
lre	II: 80°C/50°C	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
Temperature range	III: 120°C/72°C			[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
npe ran	I: 40°C/24°C			[N/mm ²]	4,0	5,5	5,5		•	
Tei	II: 80°C/50°C	waterfilled drill hole	τ _{Rk,cr}	[N/mm ²]	3,0	4,0	4,0	no per	formance	assessed
	III: 120°C/72°C			[N/mm ²]	2,5	3,0	3,0	1		
Redu	ctionfactor ψ ⁰ sus i	n concrete C20/25								
Temperature range	I: 40°C/24°C	dry and wet					0,	,73		
nperatı range	II: 80°C/50°C	concrete	ψ ⁰ sus	[-]			0.	,65		
emp ra	III: 120°C/72°C	waterfilled drill hole						,57		
Η				C25/30				,02		
				C30/37				,04		
	asing factors for τ_{Rk}	(C35/45				,07		
$\tau_{Rk} = \mathbf{U}$	ψ _c · τ _{Rk} (C20/25)		Ψc	C40/50				,08		
				C45/55 C50/60				,09 ,10		
Conc	rete cone failure a	and splitting failure		000/00	1			,		
	ant parameter	and opining failule					see Ta	able C3		
	lation factor			1	1		000 10			
	nd wet concrete		γinst	[-]			1	,2		
-	filled drill hole		Yinst	[-]		1,4			rmance de	etermined
¹⁾ faste inter inter	ening screws or three nally threaded anch nally threaded anch /MU-IG M20: Interna	aded rods (incl. nut and or rod. The characteris or rod and the fastening ally threaded rod: streng	d washe tic tensi g eleme	er) must co ion resistar ent.	nce for stee	the approp el failure o	f the given	rial and pr strength	roperty clas class are v	ss of the alid for the
Sikla	a Injection Syst	tem VMU plus for	concr	rete						
Perfe	ormance	or internally threade			under ter	nsion loa	lds		Anne>	« C7

Internally threaded anchor rod				IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm	1)					•	I		I
Characteristic resistance,	5.8	$V^0_{Rk,s}$	[kN]	6	10	17	25	45	74
steel zinc plated, strength class	8.8	$V^0_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial factor		γMs,V	[-]			1,	25		
Characteristic resistance, stainless steel A4 / HCR, strength class	70	V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾
Partial factor		γMs,V	[-]			1,56			2,38
Ductility factor		k 7	[-]			1	,0		-
Steel failure <u>with</u> lever arm ¹⁾								-	
Characteristic bending moment,	5.8	$M^0_{Rk,s}$	[Nm]	8	19	37	66	167	325
steel zinc plated, strength class	8.8	$M^0_{Rk,s}$	[Nm]	12	30	60	105	267	519
Partial factor		γMs,V	[-]			1,:	25		
Characteristic bending resistance, stainless steel A4 / HCR, strength class	naracteristic bending sistance, stainless steel 70 M ⁰ _{Rk,s}			11	26	53	92	234	643 ²⁾
Partial factor		γMs,V	[-]			1,56			2,38
Concrete pry-out failure									
Pry-out factor		k ₈	[-]			2	,0		
Concrete edge failure									
Effective length of fastener		lf	[mm]		mi	n(h _{ef} ; 12 d _n	om)		min (h _{ef} ; 300mm)
Outside diameter of fastener		d_{nom}	[mm]	10	12	16	20	24	30
Installation factor		γinst	[-]			1	,0		
 fastening screws or threaded rod internally threaded anchor rod. The internally threaded anchor rod and for VMU-IG M20: Internally thread class 70 	ne cha d the f	racteristi fastening	c shear re element	esistance fo	r steel failu	re of the give	en strength	class are va	alid for the

Sikla Injection System VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under shear loads

Reba	r					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel	failu	re													
Chara	acteri	stic resistance)	N _{Rk,s}	[kN]					A ₅ ∙ f _{uk} ¹)				
Cross	sect	ional area		As	[mm²]	50	79	113	154	201	314	491	616	804	
Partia	ıl fact	or		γMs,N	[-]					1,4 ²⁾					
Com	oined	I pull-out and	l concrete cone	failure											
Char	acter	istic bond re	sistance in uncr	acked c	oncrete C	20/25									
	I:	40°C/24°C				10	12	12	12	12	12	11	10	8,5	
ar	II:	80°C/50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
nperatu range	III:	120°C/72°C	001101010			5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
Temperature range	I:	40°C/24°C				7,5	8,5	8,5	8,5	8,5		,			
Te	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	n	o perfo asse		e	
	III:	120°C/72°C	hole			4,0	5,0	5,0	5,0	5,0		4550	0000		
Char	acter	istic bond re	sistance in crac	ked con	crete C20	/25									
	I:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
ar	II:	80°C/50°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
nperatu range	111:	120°C/72°C	contracte			2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range	I:	40°C/24°C				4,0	4,0	5,5	5,5	5,5					
Tel	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	4,0	no performance assessed				
	III:	120°C/72°C	hole			2,0	2,5	3,0	3,0	3,0		4550	5500		
Redu	ction	nfactor ψ ⁰ sus i	n concrete C20/2	25											
ture	1:	40°C/24°C	dry and wet							0,73					
Temperature range	II:	80°C/50°C	concrete waterfilled drill	ψ^0 sus	[-]					0,65					
Tem	III:	120°C/72°C	hole							0,57					
-					C25/30					1,02					
					C30/37					1,04					
	-	factors for τ_{Rk}	κ.	Ψc	C35/45					1,07					
τ _{Rk} =	Ψα・τ	rk (C20/25)		φε	C40/50					1,08					
					C45/55					1,09					
-					C50/60					1,10					
			and splitting fail	ure						T = 1-1	00				
		arameter							sec	e Table	63				
		n factor					1								
-		et concrete		γinst	[-]	1,0					,2				
		drill hole		γinst	[-]			1,4			no perf	ormand	ce asse	essec	
		taken from the of national req	e specifications of gulation	reinforcir	ng bars										
Sikla	a Inie	ection Svst	em VMU plus	for con	crete										
	.,	2,50													
n f .	orma											Λ	nex C	٥	

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic resistance	$V^0_{Rk,s}$	[kN]				0,5	0 • A _s •	$f_{uk}^{1)}$			
Cross sectional area	As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1,2	• W _{el} •	$f_{uk}^{1)}$			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γMs,V	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]			min(h _{ef} ;	12 d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				

Sikla Injection System VMU plus for concrete

Performance Characteristic values for rebar under shear load

Reba	r					Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel	failu	ure				1	1	<u>I</u>	<u> </u>	1			1	1		
Chara	acter	istic resistance	9	N _{Rk,s,C1}	[kN]				/	A ₅∙f _{uk} ¹)					
Cross sectional area As			[mm²]	50	79	113	154	201	314	491	616	804				
Partial factor YMs,N						1,4 ²⁾										
Com	bine	d pull-out and	I concrete con	e failure)											
Char	acte	ristic bond re	sistance in cor	ncrete C	20/25 to C	50/60										
је	1:	40°C/24°C	dry and wet	τ̃Rk,C1		2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5		
Temperature range	II:	80°C/50°C			[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1		
ure	III:	120°C/72°C	001101010			1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4		
erat	1:	40°C/24°C				2,5	2,5	3,7	3,7	3,7						
dme	II:	80°C/50°C	waterfilled drill hole	$ au_{Rk,C1}$	[N/mm²]	1,6	1,9	2,7	2,7	2,7	no per	rforman	ce asse	essec		
μ	μ ^ω III: 120°C/72°C					1,3	1,6	2,0	2,0	2,0	1					
Insta	llatic	on factor														
dry a	dry and wet concrete γ _{inst} [-]						1,0 1,2									
water	waterfilled drill hole Yinst					1,4 no performance asse						essed				

²⁾ in absence of national regulation

Table C13: Characteristic values for rebar under seismic action, shear load,performance category C1

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 2 5	Ø 28	Ø 32	
Steel failure <u>without</u> lever arm												
Characteristic resistance	$V_{Rk,s,C1}$	[kN]				0,35	ō•A₅•	f _{uk} 1)				
Cross sectional area	As	[mm ²]	50	79	113	154	201	314	491	616	804	
Partial factor	γMs,V	[-]	1,5 ²⁾									
Ductility factor k ₇ [-] 1,0												
 ¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars ²⁾ in absence of national regulation 												
Sikla Injection System VMU plus for concrete												
Performance Characteristic values for rebar under seismic action, category C1										Annex C11		

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete C20/25, static and quasi-static action												
Temperature range I:	δ_{N0} -factor		0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
40°C/24°C	$\delta_{N\infty}\text{-}factor$		0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperature range II:	δ_{N0} -factor	mm	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
80°C/50°C	$\delta_{N\infty}$ -factor	$\left[\frac{1}{N/mm^2}\right]$	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperature range III:	δ _{N0} -factor		0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
120°C/72°C	δ _{N∞} -factor		0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Cracked concrete C20	/25, static a	nd quasi-statio	c action									
Temperature range I:	δ_{N0} -factor		0,090		0,070							
40°C/24°C	δ _{N∞} -factor		0,105		0,105							
Temperature range II:	δ _{N0} -factor	_ mm	0,2	219	0,170							
80°C/50°C	δ _{N∞} -factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,2	255			0,2	245				
Temperature range III:	δ _{N0} -factor		0,2	219	0,170							
120°C/72°C	δ _{N∞} -factor		0,2	255		0,245						

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-} \text{ factor } \cdot \tau; \qquad \quad \tau\text{: acting bond stress for tension load}$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \tau;$

Table C15: Displacement factor under shear load¹⁾ (threaded rod)

Threaded rod	M8	M10	M12	M16	M20	M24	M27	M30					
Uncracked concrete C20/25, static and quasi-static action													
All temperature	δ _{v0} -factor	ر mm	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03			
ranges	δ _{v∞} -factor	$\left[\frac{1}{N/mm^2}\right]$	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05			
Cracked concrete C20/25, static and quasi-static action													
All temperature	δvo-factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07			
ranges	δ _{v∞} -factor		0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10			
¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: acting shear load $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;													

Sikla Injection System VMU plus for concrete

Performance

Displacements (threaded rod)

Internally threaded and	chor rod		IG-M6	IG-M8	IG- M10	IG-M12	IG-M16	IG-M20			
Uncracked concrete C2	0/25, static and	quasi-static act	ion		•						
Temperature range I:	δ_{N0} -factor		0,023	0,026	0,031	0,036	0,041	0,049			
40°C/24°C	δ _{N∞} -factor		0,033	0,037	0,045	0,052	0,060	0,071			
Temperature range II:	δ_{N0} -factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,056	0,063	0,075	0,088	0,100	0,119			
80°C/50°C	$\delta_{N\infty}$ -factor	^L N/mm ²	0,081	0,090	0,108	0,127	0,145	0,172			
Temperature range III:	δ_{N0} -factor		0,056	0,063	0,075	0,088	0,100	0,119			
120°C/72°C	$\delta_{N\infty}$ -factor		0,081	0,090	0,108	0,127	0,145	0,172			
Cracked concrete C20/2	5, static and q	uasi-static action	1								
Temperature range I:	δ_{N0} -factor		0,090	0,070							
40°C/24°C	δ _{N∞} -factor		0,105	0,105							
Temperature range II:	δ _{N0} -factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,219			0,170					
80°C/50°C	δ _{N∞} -factor	$\left[\frac{N}{mm^2}\right]$	0,255	0,245							
Temperature range III:	δ_{N0} -factor		0,219	0,170							
120°C/72°C	$\delta_{N\infty}$ -factor		0,255	0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor } \cdot \tau; \qquad \tau: \text{ acting bond stress for tension load}$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C17: Displacement factor under shear load¹⁾ (internally threaded anchor rod)

Internally threaded and	chor rod		IG-M6	IG-M8	IG- M10	IG-M12	IG-M16	IG-M20			
Uncracked and cracked											
	δvo-factor	[]	0,07	0,06	0,06	0,05	0,04	0,04			
All temperature ranges	$\delta_{V\infty}$ -factor	[N/mm ²]	0,10	0,09	0,08	0,08	0,06	0,06			
¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor · V; V: acting shear load $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;											
Sikla Injection Syste Performance Displacements (internal	Annex C13										

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete C2	20/25, static a	and quasi-st	atic act	ion								
Temperature range I:	δ_{N0} -factor	[<u>mm</u> [<u>N/mm²]</u> -	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
40°C/24°C	$\delta_{N\infty}$ -factor		0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II:	δ _{N0} -factor		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
80°C/50°C	$\delta_{N\infty}$ -factor		0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III:	δ_{N0} -factor		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
120°C/72°C	$\delta_{N\infty}$ -factor		0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20/	25, static and	d quasi-stati	ic actior	ו								
Temperature range I:	δ_{N0} -factor		0,090		0,070							
40°C/24°C	$\delta_{N\infty}$ -factor		0,105		0,105							
Temperature range II:	δ _{N0} -factor	1	0,2	219	0,170							
80°C/50°C	$\delta_{N\infty}$ -factor	$\left[\frac{1}{N/mm^2}\right]$	0,2	255	0,245							
Temperature range III:	δ_{N0} -factor		0,2	219				0,170				
120°C/72°C	δ _{N∞} -factor		0,2	255	0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \ \cdot \ \tau; \qquad \quad \tau: \text{ acting bond stress for tension load}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C19: Displacement factor under shear load¹⁾ (rebar)

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Uncracked concrete C20/25, static and quasi-static action													
All temperature ranges	δ_{V0} -factor		0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03		
Antemperature ranges	δ _{v∞} -factor	[[] N/mm ²]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04		
Cracked concrete C20/25, static and quasi-static action													
All temperature ranges	δ_{V0} -factor		0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06		
All temperature ranges $\delta_{V_{\infty}}$ -factor $\left[\frac{N/mm^2}{N/mm^2}\right]$ 0,18 0,18 0,17 0,16 0,15 0,14 0,12 0,11 0,10													
¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor · V; V: acting shear load $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;													
Sikla Injection System Performance Displacements (rebar)	A	Annex C14											